Abstract
This paper, which we dedicate to Lucien Le Cam for his seventieth birthday, has been written in the spirit of his pioneering works on the relationships between the metric structure of the parameter space and the rate of convergence of optimal estimators. It has been written in his honour as a contribution to his theory. It contains further developments of the theory of minimum contrast estimators elaborated in a previous paper. We focus on minimum contrast estimators on sieves. By a `sieve' we mean some approximating space of the set of parameters. The sieves which are commonly used in practice are D-dimensional linear spaces generated by some basis: piecewise polynomials, wavelets, Fourier, etc. It was recently pointed out that nonlinear sieves should also be considered since they provide better spatial adaptation (think of histograms built from any partition of D subintervals of [0,1] as a typical example). We introduce some metric assumptions which are closely related to the notion of finite-dimensional metric space in the sense of Le Cam. These assumptions are satisfied by the examples of practical interest and allow us to compute sharp rates of convergence for minimum contrast estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.