Abstract

We apply a numerical minimum action method derived from the Wentzell-Freidlin theory of large deviations to the Kardar-Parisi-Zhang equation for the height profile of a growing interface. In one dimension we find that the transition pathway between different height configurations is determined by the nucleation and subsequent propagation of facets or steps, corresponding to moving domain walls or growth modes in the underlying noise-driven Burgers equation. This transition scenario is in accordance with recent analytical studies of the one-dimensional Kardar-Parisi-Zhang equation in the asymptotic weak noise limit. We also briefly discuss transitions in two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.