Abstract

A new guidance and control system for a spaceplane is presented. The dynamics of the spaceplane has strong nonlinearity, due to which it is difficult to determine the optimal trajectory analytically and to design a stable trajectory tracking system. Therefore, in this study, we attempt to design a guidance and control system using a state-space exact linearization method without any approximation. Then, a minimum acceleration guidance law is derived analytically by solving a two-point boundary-value problem. Lastly, a trajectory control system is designed to track the vehicle with respect to the reference trajectory generated by the guidance system. The numerical simulation results confirm the validity of the linearized model, the optimality of the guidance system and the good tracking property of the developed system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.