Abstract
In this paper, we study re-entrant flow shop scheduling problems with the objective of minimizing total completion time. In a re-entrant scheduling problem, jobs may visit some machines more than once for processing. The problem is NP-hard even for machine number m = 2 . A heuristic algorithm is presented to solve the problem, in which an effective k -insertion technique is introduced as the improvement strategy in iterations. Computational experiments and analyses are performed to give guidelines of choosing parameters in the algorithm. We also provide a lower bound for the total completion time of the optimal solution when there are only two machines. Objective function values of the heuristic solutions are compared with the lower bounds to evaluate the efficiency of the algorithm. For randomly generated instances, the results show that the given heuristic algorithm generates solutions with total completion times within 1.2 times of the lower bounds in most of the cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.