Abstract

The variation of phase noise across the frequency of operation of a CMOS ring oscillator is described analytically. The delay element of the ring oscillator considered comprises of a source-coupled differential pair with an active load element. In this circuit topology where the frequency of oscillation is varied by changing the resistance of the load, theory derived in this work predicts that phase noise will remain constant if constant output swing is maintained. Such an oscillator is designed in a 0.5 μm CMOS process and the simulation results verify the theoretical analysis. Consequently, an oscillator design methodology is provided that dramatically reduces the phase noise optimization problem to just one frequency within the oscillator's output frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.