Abstract

Among the various fouling mitigation strategies, surface modification is gaining increased attention due to its environmental compatibility, i.e., reduced consumption of potentially harmful fouling inhibitors. One approach is to decrease the surface energy, which could give rise to lower adhesive strength of deposited crystals on surfaces. The present work aims at investigating the influence of various novel coatings on the interaction energies between CaSO4 deposits and modified surfaces. Investigated coatings are (i) solvent based, (ii) water based, and (iii) electroless Ni-P-BN. A systematic set of fouling runs has been conducted under similar operating conditions for all coatings. The experimental results show that the deposition process is strongly affected by altering the surface properties, particularly the electron donor component. Furthermore, the contribution of the Lifshitz–van der Waals energy to the total interaction energy is marginal in comparison to that of the Lewis acid–base energy under the range of operating conditions in this study. Overall, in terms of reduced stickiness of deposits onto the surface, the solvent-based coatings performed best.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.