Abstract

Many methods have been developed for the design of a single-degree-of-freedom (SDOF) absorber to damp SDOF vibration. Yet there are few studies for the case where both the absorber and the main system have multiple degrees of freedom. In this paper, an efficient numerical approach based on the descent-subgradient method is proposed to maximize the minimal damping of modes in a prescribed frequency range for general viscous or hysteretic multi-degree-of-freedom (MDOF) tuned-mass systems. Examples are given to illustrate the efficiency of the minimax method and the damping potential of MDOF tuned-mass dampers (TMDs). The performance of minimax, H2, and H ∞ optimal TMDs are compared. Finally, the results of an experiment in which a 2-DOF TMD is optimized to damp the first two flexural modes of a free–free beam are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.