Abstract

Performing epilepsy surgery on children with non-lesional brain MRI often results in large lobar or multilobar resections. The aim of this study was to determine if smaller resections result in a comparable rate of seizure freedom. We reviewed 25 children who had undergone focal corticectomies restricted to one aspect of a single lobe or the insula at our institution within a 5.5-year period. Data collected in the comprehensive non-invasive pre-surgical evaluation (including scalp video-EEG, volumetric MRI, functional MRI, EEG source localization, and SPECT and PET), as well as from invasive recordings performed in each patient, was reviewed. Data from each functional modality was identified as convergent or divergent with the epileptogenic zone using image coregistration. Specific biomarkers (from extra-operative and invasive testing) previously indicated to be indicative of focal epileptogenicity were used to further tailor each resection to an epileptogenic epicentre. Tissue pathology and postoperative outcomes were obtained from all 25 patients. Two years postoperatively, 15/25 (60%) children were seizure-free, three (12%) experienced >90% reduction in seizure frequency, two (8%) had a 50-90% reduction in seizure frequency, and the remaining five (20%) had no change in seizure burden. There was no significant difference in outcome based on numerous pre- and postoperative factors including location of resection, the number of preoperative functional tests providing convergent data, and tissue pathology. In MRI-negative children with focal epilepsy, an epileptogenic epicentre within a larger epileptogenic zone can be identified when specific biomarkers are recognized on non-invasive and invasive testing. When such children undergo resection of a small, well-defined epileptogenic epicentre, favourable outcomes can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.