Abstract

BackgroundAnti-tuberculous therapy (ATT) alone cannot easily cure spine tuberculosis (STB) though it is the most essential treatment. Many studies have confirmed the efficacy of the surgical treatment of STB through anterior, anterolateral, posterior debridement, and intervertebral fusion or combined with internal fixation. However, the conventional surgical approach requires extensive exposure of the affected areas with high rates of morbidity and mortality. Recently, minimally invasive surgery has come into use to reduce iatrogenic trauma and relevant complications. Here, we introduced a novel technique for the treatment of thoracic and lumbar spine tuberculosis: minimally invasive far lateral debridement and posterior instrumentation (MI-FLDPI). In this study, we evaluated the technical feasibility, the clinical outcomes, and the postoperative complications.MethodsWe did a prospective, non-randomized study on this new technique. Twenty three patients (13 males) with thoracic or lumbar spine tuberculosis who underwent minimally invasive far lateral debridement and posterior instrumentation were included in the study. The preoperative comorbidities, operation duration, intra-operative hemorrhage, Cobb’s angles, and postoperative complications were recorded and analyzed. Clinical outcomes were evaluated by Visual Analog Scale (VAS), Oswestry Disability Index (ODI), neurological recovery, and eradication of tuberculosis. Radiological outcomes were evaluated by changes in Cobb’s angle and fusion status of the affected segments.ResultsThe patients were followed for an average of 19 months (ranging from 12 to 36 months). At the final follow-up, CRP and ESR of all patients were normal. The VAS and ODI were significantly improved compared with preoperative values (P < 0.05). No evident progression of the kyphotic deformity was found after surgery. Twenty two patients showed spontaneous peripheral interbody fusion 1 year after surgery. There were no failure of the instrumentation even though a young female with drug-resistant tuberculosis showed no sign of interbody fusion at the third year follow-up. All the patients with preoperative neurological deficit showed complete recovery at the final follow-up.ConclusionsMI-FLDPI using expandable tubular retractor could be recommended to treat thoracic and lumbar spine tuberculosis for the advantages of less trauma, earlier recovery, and less complications. Spontaneous peripheral interbody fusion was observed in nearly all the cases even without bone grafting.

Highlights

  • Spinal tuberculosis (STB), which most commonly affects the thoracic and thoracolumbar spine [1, 2], accounts for nearly half of the skeletal tuberculosis [3]

  • We introduced a novel technique for the treatment of thoracic and lumbar spine tuberculosis: minimally invasive far lateral debridement and posterior instrumentation (MI-FLDPI)

  • Twenty three patients diagnosed with thoracic or lumbar spinal tuberculosis who underwent MI-FLDPI performed by the senior author from January 2013 to September 2018 were enrolled in this study

Read more

Summary

Methods

This is a prospective clinical outcome study, which was approved by the ethics committee of our institution. In the long segmental fixation group, the pedicle screws were only inserted in the adjacent normal vertebrae. This kind of fixation was used in early 15 cases to eliminate the interference of the instrumentation to the TB focus. Each incision was able to provide access to adjacent two vertebrae for ipsilateral two pedicle screws insertion. In the short segmental fixation group, at first, four pedicle screws were percutaneously and ipsilaterally inserted into the involved vertebra, and the adjacent two normal vertebrae with a 5.- cm rod assembled to provide intraoperative stability. All analyses were conducted using the SPSS 19.0 software (SPSS, Inc., Chicago, IL, USA)

Results
Conclusions
Introduction
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.