Abstract
We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional schemes, in a projective plane. Among the new results here are: a maximality theorem and the existence of arbitrarily large gaps or non-gaps for the integers x for which the minimal Terracini locus in degree d is non-empty. We study similar theorems for the critical schemes of the minimal Terracini sets. This part is framed in a more general framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.