Abstract
This paper introduces minimal solvers that jointly solve for radial lens undistortion and affine-rectification using local features extracted from the image of coplanar translated and reflected scene texture, which is common in man-made environments. The proposed solvers accommodate different types of local features and sampling strategies, and three of the proposed variants require just one feature correspondence. State-of-the-art techniques from algebraic geometry are used to simplify the formulation of the solvers. The generated solvers are stable, small and fast. Synthetic and real-image experiments show that the proposed solvers have superior robustness to noise compared to the state of the art. The solvers are integrated with an automated system for rectifying imaged scene planes from coplanar repeated texture. Accurate rectifications on challenging imagery taken with narrow to wide field-of-view lenses demonstrate the applicability of the proposed solvers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.