Abstract

Cooperation is doubtless a relevant ingredient on rewriting rules based computing models. This paper provides an overview on both classical and newest results studying how cooperation among objects influences the ability of cell-like membrane systems to solve computationally hard problems in an efficient way. In this paper, two types of such membrane systems will be considered: (a) polarizationless P systems with active membranes without dissolution rules when minimal cooperation is permitted in object evolution rules; and (b) cell-like P systems with symport/antiport rules of minimal length. Specifically, assuming that P is not equal to NP, several frontiers of the efficiency are obtained in these two computing frameworks, in such manner that each borderline provides a tool to tackle the P versus NP problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.