Abstract
AbstractSuppose that 〈xk〉k∈ℕ is a countable sequence of real numbers. Working in the usual subsystems for reverse mathematics, RCA0 suffices to prove the existence of a sequence of reals 〈uk〉k∈ℕ such that for each k, uk is the minimum of {x0, x1, …, xk}. However, if we wish to prove the existence of a sequence of integer indices of minima of initial segments of 〈xk〉k∈ℕ, the stronger subsystem WKL0 is required. Following the presentation of these reverse mathematics results, we will derive computability theoretic corollaries and use them to illustrate a distinction between computable analysis and constructive analysis. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.