Abstract

Thrombocytopenic disorders have been treated with the Thrombopoietin-receptor agonist Eltrombopag. Patients with the same apparent form of thrombocytopenia may respond differently to the treatment. We describe a miniaturized bone marrow tissue model that provides a screening bioreactor for personalized, pre-treatment response prediction to Eltrombopag for individual patients. Using silk fibroin, a 3D bone marrow niche was developed that reproduces platelet biogenesis. Hematopoietic progenitors were isolated from a small amount of peripheral blood of patients with mutations in ANKRD26 and MYH9 genes, who had previously received Eltrombopag. The ex vivo response was strongly correlated with the in vivo platelet response. Induced Pluripotent Stem Cells (iPSCs) from one patient with mutated MYH9 differentiated into functional megakaryocytes that responded to Eltrombopag. Combining patient-derived cells and iPSCs with the 3D bone marrow model technology allows having a reproducible system for studying drug mechanisms and for individualized, pre-treatment selection of effective therapy in Inherited Thrombocytopenias.

Highlights

  • Bone marrow megakaryocytes are responsible for the continuous production of platelets in the blood, driven by Thrombopoietin (TPO) through interaction with its receptor MPL (Hitchcock and Kaushansky, 2014; Kaushansky, 2015)

  • Hematopoietic bone marrow is located in the medullary cavity of flat and long bones (Travlos, 2006), served by blood vessels that branch out into millions of small thin-walled arterioles and sinusoids allowing mature blood cells to enter the bloodstream (Figure 1A)

  • Megakaryocyte differentiation of Induced Pluripotent Stem Cells (iPSCs) clones was confirmed in liquid culture conditions (Figure 7A and Figure 7—figure supplement 3) and demonstrated that Myosin Heavy Chain 9 (MYH9)-RD iPSCs present a defect in proplatelet formation and branching with respect to control iPSCs (Figure 7B–D)

Read more

Summary

Introduction

Bone marrow megakaryocytes are responsible for the continuous production of platelets in the blood, driven by Thrombopoietin (TPO) through interaction with its receptor MPL (Hitchcock and Kaushansky, 2014; Kaushansky, 2015). Certain patients with Inherited Thrombocytopenia respond well to treatments designed to boost platelet production, but others do not Why these differences exist could be investigated by designing new test systems that recreate the form and function of bone marrow in the laboratory. We developed an ex vivo miniaturized 3D bone marrow tissue model that recapitulates ex vivo platelet biogenesis of patients with different forms of Inherited Thrombocytopenias. This device is a radical improvement of the previous model because it minimizes the number of cultured cells required in an unlimited number of simultaneous culture chambers. Our data suggest this tissue model will have substantial applicability for the evaluation of the effects of compounds to determine their impact on platelet production

Results
Discussion
Materials and methods
Evaluation of platelet morphology
Funding Funder European Commission
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.