Abstract

Miniature wideband bandpass filters are proposed using multilayer liquid crystal polymer (LCP) technology to cover the very low-frequency band of 0.5-2 GHz. To reduce the filter size at such low frequencies, lumped-element theory is used for the filter design and a value extraction process is developed to accurately get the capacitive or inductive values of different multilayer microstrip quasi-lumped elements. These elements are used to produce the required filter response, and thus the overall design process relies less on the time-consuming EM optimization. A filter with the size 0.058 λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> ×0.026 λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> ×0.004 λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> is demonstrated as an initial design. To further improve the stopband performance, an improved design is then developed while still maintaining the compact sizes within 0.065 λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> ×0.026 λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> ×0.004 λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> . Both filters are fabricated on a five-metal layer LCP construction, which has not been done before, with robust via connections using the newly developed laser-aided fabrication technique. Good agreements between simulation and fabrication are observed, which has proven both the success of the design methodology, as well as the fabrication technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.