Abstract

BackgroundNeuroscience research in brain development and disorders can benefit from an in vivo animal model that portrays normal white matter (WM) development trajectories and has a sufficiently large cerebrum for imaging with human MRI scanners and protocols. New methodTwelve three-month-old Sinclair™ miniature pigs (Sus scrofa domestica) were longitudinally evaluated during adolescent development using advanced diffusion weighted imaging (DWI) focused on cerebral WM. Animals had three MRI scans every 23.95 ± 3.73 days using a 3-T scanner. The DWI imaging protocol closely modeled advanced human structural protocols and consisted of fifteen b-shells (b = 0–3500 s/mm2) with 32-directions/shell. DWI data were analyzed using diffusion kurtosis and bi-exponential modeling that provided measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axial kurtosis, tortuosity, and permeability-diffusivity index (PDI). ResultsSignificant longitudinal effects of brain development were observed for whole-brain average FA, KA, and PDI (all p < 0.001). There were expected regional differences in trends, with corpus callosum fibers showing the highest rate of change. Comparison with existing method(s)Pigs have a large, gyrencephalic brain that can be studied using clinical MRI scanners/protocols. Pigs are less complex than non-human primates thus satisfying the “replacement” principle of animal research. ConclusionsLongitudinal effects were observed for whole-brain and regional diffusion measurements. The changes in diffusion measurements were interepreted as evidence for ongoing myelination and maturation of cerebral WM. Corpus callosum and superficial cortical WM showed the expected higher rates of change, mirroring results in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.