Abstract

X-ray Raman scattering (XRS) spectroscopy is an inelastic scattering method that uses hard X-rays of the order of 10 keV to measure energy-loss spectra at absorption edges of light elements (Si, Mg, O etc.), with an energy resolution below 1 eV. The high-energy X-rays employed with this technique can penetrate thick or dense sample containers such as the diamond anvils employed in high-pressure cells. Here, we describe the use of custom-made conical miniature diamond anvils of less than 500 µm thickness which allow pressure generation of up to 70 GPa. This set-up overcomes the limitations of the XRS technique in very high-pressure measurements (>10 GPa) by drastically improving the signal-to-noise ratio. The conical shape of the base of the diamonds gives a 70° opening angle, enabling measurements in both low- and high-angle scattering geometry. This reduction of the diamond thickness to one-third of the classical diamond anvils considerably lowers the attenuation of the incoming and the scattered beams and thus enhances the signal-to-noise ratio significantly. A further improvement of the signal-to-background ratio is obtained by a recess of ∼20 µm that is milled in the culet of the miniature anvils. This recess increases the sample scattering volume by a factor of three at a pressure of 60 GPa. Examples of X-ray Raman spectra collected at the O K-edge and Si L-edge in SiO2 glass at high pressures up to 47 GPa demonstrate the significant improvement and potential for spectroscopic studies of low-Z elements at highpressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.