Abstract

A series of soil and stream sediments developed during intense weathering on the metaluminous Danburg granite, northeastern Georgia, U.S.A., have been analyzed mineralogically and chemically. The concentrations of Ba, Na, Rb and Cs in the silt and coarser fractions are controlled mainly by feldspars and biotite. Hf is controlled by zircon, and the REE (rare-earth elements) and Th are largely controlled by sphene. Variations in feldspar, sphene and zircon may produce small variations in Eu/Sm and La/Lu ratios. Ferromagnesian minerals control Ta, Fe, Co, Sc and Cr concentrations. The mineralogical and chemical composition of the Danburg granite is more closely reflected in the silt than in the sand or gravel fractions of stream sediments. In the silt, the contents of Rb, REE, Th, Ta, Fe, Co and Sc and the ratios of La/Sc, Th/Sc, La/Co, Th/Co, Eu/Sm and La/Lu are similar to those in the unweathered granite. In contrast, these element contents or ratios in the sands and gravels are 0.05−3× the concentration in the unweathered granite. Ta and Ba contents are an exception to the above. The Ta and Ba contents of the sands and gravels are similar to those of the granite. In the kaolinite-halloysite clays, the content of Na is depleted relative to the source. Rb, Cs, Ba, Hf and Ta are depleted or enriched in the clays relative to the source, while the REE, Th, Fe, Co, Sc and Cr are enriched. The Eu/Sm (Eu anomaly size) and La/Lu ratios, and the REE patterns of the clays are similar to those of the source. Thus, the mineralogy and element contents of a siltstone developed from metaluminous, granitic sources during intense weathering would be expected to be more similar to the source rock than the sandstones and conglomerates. Claystones should contain similar REE patterns and Eu/Sm ratios as the source rock, but such fine-grained sediments might represent much larger areas of source rocks than the more locally derived sandstones or conglomerates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.