Abstract

Physical and chemical interactions between soil organic matter (OM) and minerals is one of the primary mechanisms for stabilizing OM in terrestrial ecosystems. Focusing on OM association with mineral surfaces, this study sought to examine mineral-associated OM from the perspectives of both mineral surface characteristics and organic matter chemistry. The research was conducted at paired-sites under North American Mid-Atlantic Coastal forest and crop production with shared environmental factors. Using carbon (C) and nitrogen (N) 1s micro- X-ray absorption near-edge fine structure (XANES) spectroscopy, we investigated the amounts and types of mineral-associated OM. Mineral specific surface area (SSA) of bulk soil was determined for three conditions: untreated, post OM removal and post iron (Fe) (oxyhydr)oxides removal. Amounts of mineral-associated OM were smaller in the agricultural soil, where greater SSA sourced from clay-sized phyllosilicates and Fe (oxyhydr)oxide minerals did not result in greater OM coverage of the mineral surface area. Although agricultural surface soil showed less abundance of phenolic C, speciation of mineral-associated OM did not differ between comparable horizons. Our results suggest that despite the plow-derived mixing of soil, which increased SSA and secondary minerals available to interact physically and chemically with OM in the plowed layer, the formation of mineral-associated OM in agricultural soil is ultimately limited by available OM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.