Abstract
Biochar holds great promise for carbon sequestration but is restricted by high costs. Here, we introduced the water–fire coupled method and developed a mineral coating technique for biochar production from paulownia waste (Paulownia fortune). Exposure time and mineral (lime) coating were assessed for their impacts on biochar properties. The former had a dominant adverse effect on carbon content, specific surface area, and carbon capture capacity of the biochar. In contrast, the latter alleviated the adverse impact on carbon capture capacity and specific surface area, the highest being 67.07% and 176.0 m2 g−1, respectively. Without a mineral coating (B), biochar functional groups reduced at the exposure time of 0–4 min (-COOH from 0.50 to 0.19 mol/kg, phenolic-OH from 0.43 to 0.14 mol/kg). In contrast, a mineral coating (B-Ca) increased -COOH from 0.25 to 0.83 mol/kg and phenolic-OH from 0.19 to 0.72 mol/kg. The pyrolysis process with a mineral coating is conceptualized as (1) wrapping the paulownia branch with the mineral, (2) enabling oxygen-limited pyrolysis inside the branch, and (3) ending the pyrolysis with water to form biochar. Ca2+ played multiple functions of ion bridging, complexation, and reduction of COx gas formation, thus enhancing the carbon capture capacity (the ratio of C in biomass converted to biochar) to 67%. This research would improve the feasibility of biochar use for carbon sequestration and climate change mitigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.