Abstract

Introduction. Vertical steel tanks are extensively used in oil fields to hold crude oil and other liquids. Their construction requires continuous surveying control. However, measurement procedures, data processing, and deviations and documentation correction are not universal and cannot be applied for tanks with a capacity of less than 3000 m3. Moreover, the process of correcting the detected bottom irregularities is poorly substantiated and intuitive. Research objective is to improve the as-built survey accuracy and reliability of the low-capacity steel tank bottom, substantiate the minimum height of its irregularities, increase the objectivity and productivity of measurement processing, develop an unambiguous method for time-predictable correction of bottom irregularities, and substantiate the optimal contents of its relief’s as-built scheme. Methods of research. Geometric leveling for the bottom profile survey failed to provide adequate accuracy and was therefore replaced by the method of trigonometric leveling. A method has been developed for determining the deviations of the existent tank bottom profile from the design position by means of algebraic actions with surfaces of a topographic order. The accuracy of determining the smallest height of bottom irregularities has been estimated under the tacheometric survey. A method has been proposed for controlling the correction of tank bottom irregularities based on evaluation calculations of bottom deformations by the finite element method. Research results. All the development results are exemplified by a specific production example. It was found that for a full completion of work, two iterations of tank bottom irregularities correction are enough. Methods of optimal design for the facility’s as-built schemes are presented. Conclusions. A simple, accurate, low-cost, productive, and time-predictable method of mine surveying, mathematical processing and correction of deviations in the tank bottom profile has been developed. This technique reduces the construction period and increases the operating time of the facility.

Highlights

  • Vertical steel tanks are extensively used in oil fields to hold crude oil and other liquids

  • A method has been developed for determining the deviations of the existent tank bottom profile from the design position by means of algebraic actions with surfaces of a topographic order

  • The accuracy of determining the smallest height of bottom irregularities has been estimated under the tacheometric survey

Read more

Summary

Introduction

Vertical steel tanks are extensively used in oil fields to hold crude oil and other liquids. Методика маркшейдерской съемки и устранения деформаций днища стальных резервуаров Барулин А. Предложена методика контроля исправления неровностей днища резервуара, основанная на оценочных расчетах деформаций днища методом конечных элементов. Установлено, что для полного завершения работы достаточно двух итераций исправления отклонений неровностей днища резервуара.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.