Abstract

Given an undirected network with positive edge costs and a positive integer d > 2 , the minimum-degree constrained minimum spanning tree problem is the problem of finding a spanning tree with minimum total cost such that each non-leaf node in the tree has a degree of at least d . This problem is new to the literature while the related problem with upper bound constraints on degrees is well studied. Mixed-integer programs proposed for either type of problem is composed, in general, of a tree-defining part and a degree-enforcing part. In our formulation of the minimum-degree constrained minimum spanning tree problem, the tree-defining part is based on the Miller–Tucker–Zemlin constraints while the only earlier paper available in the literature on this problem uses single and multi-commodity flow-based formulations that are well studied for the case of upper degree constraints. We propose a new set of constraints for the degree-enforcing part that lead to significantly better solution times than earlier approaches when used in conjunction with Miller–Tucker–Zemlin constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.