Abstract

We used statistical correlation functions (CFs) to describe food microstructure and to reconstruct their 3D complexity by using limited information coming from single 2D microtomographic images. Apple fleshy parenchyma tissue and muffin crumb were chosen to test the ability of the reconstructions to mimic structural diversities. Several metrics based on morphological measures and cluster functions were utilized to analyze the fidelity of reconstructions. For the apple, reconstructions are accurate enough proving that lineal, L2, and two-point, S2, functions sufficiently describe the complexity of apple tissue. Muffin structure is isotropic but statistically inhomogeneous showing at least two different porosity domains which reduced the fidelity of reconstructions. Further improvement could be obtained by using more CFs as input data and by implementation of the techniques dealing with statistical non-stationarity. Novel stochastic reconstruction and CF-based characterization methods could improve the fidelity of reconstruction and future advances of this technology will allow estimating macroscopic food properties based on (limited) 2/3D input information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.