Abstract

In consideration of recycling solid waste to achieve high value-added products, glass-ceramics have been fabricated from municipal solid waste incineration (MSWI) fly ash, pickling sludge (PS), and waste glass (WG) by melting at 1450 °C firstly to achieve parent glass and then crystallizing at 850 °C. Results demonstrated that heavy metals have been well solidified in the prepared glass-ceramics, and relatively/extremely low leaching concentrations of heavy metals have been detected. The synthetic toxicity index of heavy metals has been greatly reduced from 7-18 to <3.2 after crystallization treatment, and the leaching concentrations of Cr, Ni, Zn, Cu, and Pb are 0.15, 0.05, 0.26, 0.12, 0.19 mg L-1 respectively. Chemical morphology analysis, principal component analysis, TEM and EPMA were utilized to clarify the migration, transformation, and solidification mechanism of heavy metals from the as-received solid wastes. The major heavy metals, Cr and Ni which is responsible for the most toxicity, mainly exist in form of the oxidation state and residual state in parent glass, while the residual state in the glass-ceramics. The solidification performance was mostly positively correlated with the form of residue state, which the stability of heavy metals in glass-ceramics is improved. The solidification mechanism of heavy metals in glass-ceramics could be explained by the combination of chemical solidification/stabilization and physical coating. The TEM and EPMA confirmed that Cr and Ni mainly exist in the spinel crystalline (NiCr2O4, Fe0.99Ni0.01Fe1.97Cr0.03O4) by solid solution or chemical substitution, and a small amount of Cr in the diopside phase. Pb, Cu, and Zn are homogenously dispersed in the glass-ceramics, which is considered as physical coating solidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.