Abstract

We analyze and compare different aspects of InAs/InAsSb and InAs/GaSb type-II superlattices for infrared detector applications and argue that the former is the most effective when implemented for mid-wavelength infrared detectors. We then report results on an InAs/InAsSb superlattice based mid-wavelength high operating temperature barrier infrared detector. At 150 K, the 50% cutoff wavelength is 5.37 μm, the quantum efficiency at 4.5 μm is ∼52% without anti-reflection coating, the dark current density under −0.2 V bias is 4.5 × 10−5 A/cm2, and the dark-current-limited and the f/2 black-body (300 K background in 3–5 μm band) specific detectivities are 4.6 × 1011 and 3.0 × 1011 cm-Hz1/2/W, respectively. A focal plane array made from the same material exhibits a mean noise equivalent differential temperature of 18.7 mK at 160 K operating temperature with an f/2 optics and a 300 K background, demonstrating significantly higher operating temperature than InSb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.