Abstract

Rechargeable magnesium batteries (rMBs) have been recognized as one of most promising next-generation energy storage devices with high energy and power density. However, the development of rMBs has been hampered by the lack of usable cathode materials with high capacity and cycling stability. Herein, we report an ultra-rapid, cost-effective, and scalable synthesis of ultrathin CuS hierarchical nanosheets by a one-step microwave-assisted preparation. Benefiting from the exceptional structural configuration, when used as the cathode material for rMBs at room temperature, the CuS hierarchical nanosheets deliver a high reversible discharge capacity of 300 mA h g-1 at 20 mA g-1, remarkable rate capability (256.5 mA h g-1 at 50 mA g-1 and 237.5 mA h g-1 at 100 mA g-1), and excellent cycling stability (135 mA h g-1 at 200 mA g-1 over 200 cycles). To date, the obtained excellent electrochemical performances are superior to most results ever reported for cathode materials of rMBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.