Abstract

Microwave sintering has emerged in recent years as a new method for sintering a variety of materials that has shown significant advantages against conventional sintering procedures. Sr and Pb doped BaTiO3 ceramics has been prepared by the high energy ball milling followed by conventional and microwave sintering. The phase formation was confirmed by X-ray diffractometer followed by Scanning electron microscopy, atomic force microscopy and Transmission electron microscopy. Dielectric constant was measured on both the samples and it is observed that, in Ba0.8Pb0.2TiO3 (abbreviated as BPT), it increased more than one order of magnitude and in Ba0.8Sr0.2TiO3 (abbreviated as BST), it increased two orders of magnitudes at room temperature and Curie transition temperature by microwave sintering. Interestingly the Curie transition temperature of BPT value decreased from 224 to 210 °C, where as in BST ferroelectric ceramics, no variation of transition temperature by conventional sintering and microwave sintering respectively. This promising technique has distinguished characteristics of energy saving, rapid processing and uniform temperature distribution throughout the samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.