Abstract

Complex electromagnetic environment in the future battlefield requires spectrum sensing equipment to have broadband and high-resolution measurement capabilities. This paper proposes a microwave photonic frequency measurement method based on optical spectrum operation and stimulated Brillouin scattering. The use of optical spectrum operation is to realize generating pump light in a large range, so as to realize the excitation of stimulated Brillouin scattering in a wide spectrum range, and further the stimulated Brillouin scattering is employed to realize high-resolution frequency sensing. The principle of this method is given and the feasibility of the method is verified experimentally. Experiment results show the measurement capability of the proposed method covers a frequency range of 0.03–40 GHz with a resolution of 25 MHz. The proposed method can effectively support high-resolution frequency sensing in complex electromagnetic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.