Abstract
It is shown that the anisotropic permeability of the magnetic particles constituting an artificial dielectric provides an explanation for the rotation of the plane of polarization and the variation of the attenuation of a plane-polarized electromagnetic signal propagating through the dielectric in the presence of a longitudinal magnetic field. The attenuation curve is found to be readily explainable from the nature of variation of the power transmitted into the particles. A more detailed agreement between experimentally observed rotation, attenuation, and computed values is shown to follow if Lewin's formulas for the permeability and permittivity of an artificial dielectric is assumed to be valid also for circularly polarized signals. The effect of the size and permeability of the metal particles on the figure of merit of rotation is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.