Abstract

The measurement of microwave emission from air showers initiated by ultra-high energy cosmic rays may open the possibility of developing a novel detection technique. This new technique possesses the advantage of the fluorescence detection technique -the reconstruction of the longitudinal shower profile -combined with a 100% duty cycle, minimal atmospheric attenuation and the use of low cost commercial equipment. Placing prototype detectors at the Auger site provides for coincidence detection of air showers using established methods, ultimately assessing the feasibility of detecting air showers through microwave radiation. Two complementary techniques are currently being pursued at the Pierre Auger Observatory. MIDAS (Microwave Detection of Air Showers), AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer), and FDWave are prototypes for large imaging dish antennas. EASIER (Extensive Air Shower Identification using Electron Radiometer), the second technique, utilizes horn antennas located on each Auger Surface Detector station for detection of microwave emission. MIDAS is a self-triggering system while AMBER, FDWave and EASIER use the trigger from the Auger detectors to record the microwave emission. The development status and future plans for these measurements is reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.