Abstract
Lignin acetylation, one of the most widespread chemical modifications used for improve the solubility of this biopolymer in organic solvents and increase polymer-lignin compatibility, has been performed for decades using time-consuming methodologies and acetylating agents with serious drawbacks. Moreover, traditional acetylation reactions generally conduce to non-selective acetylation of both aliphatic and phenolic groups. In this work, we demonstrated that partial and selective acetylation of kraft lignin can be carried out through a greener, simple and fast microwave-assisted process using acetic acid as solvent and acetylating agent. Structural characterization via FTIR, 1H-13C HSQC and 31P NMR demonstrated that acetylation reaction occurs selectively only in aliphatic hydroxyls, preserving the phenolic hydroxyls. Optimal reaction conditions were obtained using 1% (v/v) of H2SO4 as catalyst and only 5 min as reaction time. The acetylated Kraft lignin (AKL) obtained, have enhanced solubility in organic solvents (ethyl acetate, chloroform and dichloromethane) compared to unmodified Kraft lignin (KL) and antioxidant capacity almost 8 times higher than a commercial antioxidant BHT. These characteristics make the partially and selectively acetylated Kraft lignin a potential green antioxidant additive to be used in polymers blends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.