Abstract

A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, −2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm−2, 0.40, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.