Abstract
In the present work microwave-assisted purification approaches for detonation nanodiamond (DND) are considered, and the resultant impurity content of purified DND revealed by direct ICP-MS and elemental analysis. A significant reduction in noncarbon contaminants as compared with detonation soot was achieved with resulting purity of 99.95%. Surface characterisation including scanning electronic microscopy, low temperature adsorption of nitrogen, acid–base potentiometric titration, zeta potential measurements and particle size distribution of the DND in suspensions revealed distinctive surface properties for each purified DND sample. Results highlight the suitability of the microwave purification approach using acid reagents, allowing nanodiamonds with different and reproducible surface properties to be produced or modified. Contamination effects from laboratory glassware used to store samples were carefully considered. Refined DND with impurity levels over two orders of magnitude lower than commercially available samples was prepared. The profile and concentration levels of residual impurities in purified samples of nanodiamond are discussed with identification of possible reasons for contamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.