Abstract

Conversion of plastic wastes into value added fuels is a good way for sustainable development. In this study, microwave-assisted fluidized bed reactor pyrolysis of polypropylene plastic for pyrolysis gas production was experimentally investigated, and the effects of pyrolysis temperature (700, 800, 900, 1000 and 1100 °C), fluidizing velocity (1.18, 2.36, 3.54, 4.72 and 5.90 × 10-3 m/s) and microwave power (600, 700, 800, 900 and 1000 W) on the pyrolysis gas products were analyzed. The results showed that when the pyrolysis temperature increased from 700 °C to 900 °C, the pyrolysis gas yield was increased from 65.2 wt% to 76.1 wt%, and then decreased to 60.7 wt% at 1100 °C. The pyrolysis gas yield was increased from 60.2 wt% to 76.1 wt% and then decreased to 42.0 wt% as the fluidizing velocity increased from 1.18 × 10-3 m/s to 5.90 × 10-3 m/s. The pyrolysis gas yield was increased from 52.2 wt% to 76.1 wt% and then decreased to 68.9 wt% as the microwave power increased from 600 W to 1000 W. An optimal pyrolysis gas yield of 76.1 wt% was obtained when the pyrolysis temperature was 900 °C, fluidizing velocity was 2.36 × 10-3 m/s and microwave power was 800 W, and the pyrolysis gas was rich in C3H6 (68.6 wt%), CH4 (15.5 wt%), and C3H8 (7.1 wt%) with a higher heating value of 51.8 MJ/m3. The pyrolysis gas produced with high heating value and abundant propylene has great potentials in applications, i.e., fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.