Abstract

A detailed study of iminyl radical cyclizations of O-aryloximes tethered to alkenes is reported. The reactions can be triggered by either microwave irradiation or conventional heating in an oil bath. A variety of radical traps can be employed, enabling C-C, C-N, C-O, C-S, or C-X bond formation and producing a diverse array of functionalized pyrrolines. Substrates containing an allylic sulfide furnish terminal alkenes by a tandem cyclization-thiyl radical β-elimination pathway. Cyclizations of hydroxylated substrates exhibit moderate diastereoselectivity that in some cases can partially be attributed to intramolecular hydrogen bonding. Computational studies suggested a possible role for thermodynamics in controlling the stereochemistry of cyclizations. The reaction temperature can be lowered from 120 to 100 °C by employing O-(p-tert-butylphenyl)oximes instead of O-phenyloximes as substrates, and these second-generation iminyl radical precursors can be used in a one-pot oxime ether formation-cyclization that is promoted by conventional heating. The functionalized pyrrolines obtained from these reactions can be conveniently transformed in several different ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.