Abstract
We determined the leakage of macromolecules using FITC-dextran-150 as a tracer and measured the extent of no-reflow phenomenon by video field analysis. The cremaster muscle of anesthetized rats was fashioned as a single layer, splayed on a lucite chamber and suffused with bicarbonate solution at 35 °C. After a 1 hour period of baseline data collection, ischemia was produced by cross-clamping the cremasteric vascular pedicle for periods of 30 minutes and 2 hours in separate experiments. Macromolecular leakage was visualized after reinstitution of perfusion. Leakage occurred at postcapillary venules 15 to 50 μm in diameter and quickly spread to the interstitium. The magnitude of leakage decreased as a function of time with continuous buffer suffusion, but remained higher than in the control period. No reflow occurred in approximately 30 percent of the muscle microvasculature upon reperfusion. The no-reflow values at 30 minute and 2 hour periods of ischemia were significantly different from the control values but were not from each other. Electron micrographs demonstrated endothelial cell swelling and migration of leukocytes and normal myocytes after 1 hour of reperfusion following 2 hours of ischemia. Our results demonstrate that permeability changes, occurrence of no reflow, and leukocyte migration precede the onset of damage to skeletal muscle in ischemia and reperfusion injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.