Abstract
We present the most recent propulsion requirements for the Laser Interferometer Space Antenna (LISA) Mission and describe potential microth ruster technology that can meet these requirements. LISA consists of three spacecraft in heliocentric orbits, forming a triangle with 5x l 0 (exp 6) km sides that are the arms of three Michelson-type interferometers. Reflective proof masses provide the reference surfaces at the end of the interferometer arms as part of the Gravitational Referenc e Sensor (GRS) designed to detect gravitational waves. The microthrus t propulsion system will be part of the Disturbance Reduction System (DRS), which is responsible for maintaining each spacecraft position w ithin approximately 10 nm around the proof masses. To provide the nec essary sensitivity, the GRS must not experience spurious acceleration s >15 (exp -10) m/ s(exp 2) in the 0.1 mHz to 1 Hz bandwidth, requiring precision formation flying and drag-free operation of the LISA spa cecraft. This leads to the following microthruster performance requir ements: a thrust range of 2-30 Micro N, a thrust resolution < 0.1 Mic ro N, and thrust noise <0.1 Hz(exp -1/2) over the LISA measurement bandwidth. The microthruster must provide this performance for 5 years c ontinuously, contain 10 years worth of propellant, and not disrupt th e science measurements. Potential microthruster technologies include Colloid, Field Emission Electric Propulsion (FEEP), and precision cold gas microthrusters. Each of these technologies is described in detai l with focus on the NASA microthruster development of the Busek Collo id Micro-Newton Thruster (CMNT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.