Abstract
The anatomy of the lateral aspect of the lumbar spine and our lateral microsurgical technique for extreme lateral lumbar disc herniations (ELLDH) is described. This study was based on the microdissection of 4 cadavers, on the morphometric evaluation of these as well as 6 dried cadaver spines and 8 lumbar CT scans, and on the use of this technique on over 200 cases. Level dependent changes in the posterior arch cause a shift of the disc space distally relative to the facet joint, an increasing amount of bone to overlie the intervertebral foramen, and a decreasing amount of working space within the exposure in the caudal direction. Therefore, more bone removal from the lateral aspect of the pars interarticularis and supero-lateral aspect of the facet joint is required in the lower lumbar spine. When the exposed ligamentum flavum is resected, the dorsal root ganglion is seen and access to the herniation and disc space is achieved. Level dependent changes in the pedicles and transverse processes lead to an alteration in the course and relationships of the nerves, thereby influencing the pathophysiology of and surgical technique for the ELLDH. The operative target is the lateral aspect of the pars interarticularis and not the intertransverse space as has been previously described. Our techniques allows for the early identification of the nerve with minimal risks of injury to it, to the adjacent vessels and to the structural integrity of the facet joint and pars interarticularis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.