Abstract

In the present research, the effects of high-pressure torsion (HPT) processing on the microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr (Ti5553) alloy were studied. HPT processing produced a white etching layer (WEL) in the middle section of the cross-section and numerous shear bands in the surface region of the cross-section. And the thickness of the WEL increased with increasing the HPT revolutions. TEM observation of the WEL revealed an ultrafine-grained structure with high degree of lattice distortions. The mechanical properties measurements showed that the hardness and ultimate tensile strength increased by HPT processing, accompanied with a decrease in the elongation to failure. It is considered that the mechanical properties of HPT processed Ti5553 alloy are mostly dominated by the shear banded region and the WEL where have the finest grain size and high density of dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.