Abstract

The microstructure of a Co 38 Ni 33 Al 29 ferromagnetic shape memory alloy was determined by conventional transmission electron microscopy (TEM), electron diffraction studies together with advanced microscopy techniques and in situ Lorentz microscopy. Rod-like precipitates, 10–60 nm long, of hexagonal close-packed ϵ -Co were confirmed to be present by high-resolution TEM. The orientation relationship between the precipitates and B2 matrix is described by the Burgers orientation relationship. The crystal structure of the martensite obtained after cooling is tetragonal L 1 0 with a (1–11) twinning plane. The magnetic domain structure was determined during an in situ cooling experiment using the Fresnel mode of Lorentz microscopy. While transformation proceeds from B2 austenite to L 1 0 martensite, new domains are nucleated, leading to a decrease in domain width, with the magnetization lying predominantly along a single direction. It was possible to completely describe the relationship between magnetic domains and crystallographic directions in the austenite phase though complications existed for the martensite phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.