Abstract

Composites of INCONEL 718 alloy reinforced with either single-crystal (SAPHIKON) or polycrys-talline (Du Pont's FP) A12O3 fiber were fabricated by pressure casting. Optical and transmission electron microscopy were used to characterize the microstructure of the composites and to determine the nature of the fiber/matrix reaction. The widely dispersed fibers in the SAPHIKON-fiber-reinforced composite had no influence on the solidification of the matrix. Six phases, γ-Ni3Al, γ'-Ni3Nb, δ-Ni3Nb, TiC, NbC, and Laves, were present in the matrix of the composite. The last three phases were formed during solidification and the others precipitated during subsequent cooling. The high density of fibers in the FP-fiber-reinforced composite led to a more uniform microstructure within the matrix. Only three phases,γ″-Ni3Nb, NbC, and Laves, were identified. Diffusion of Ti into the A12O3 fiber resulted in preferential grain growth in the FP fiber in areas adjacent to the fiber/matrix interface. The fiber/matrix bond strength in shear in the SAPHIKON-fiber-reinforced composite was in excess of 150 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.