Abstract

The present work has been aimed to study the microstructures, functional properties and the influence of different thermomechanical training methods on the two-way shape memory effect in NiTi-based melt-spun ribbons. In order to get small-dimensioned shape memory alloys (SMAs) with good functional and mechanical properties, a rapid solidification technique was employed. Their fracture and elasticity characteristics have been determined, as well as shape memory properties by thermomechanical cycling. The ribbons were trained under tensile and bending deformation by thermal cycling through the phase transformation temperature range.The results displayed that all different training methods were effective in developing a two-way shape memory effect (TWSME). The influence of copper (5–25at.% Cu) and tungsten (2at.% W) on the microstructure, and the functional and mechanical behavior of NiTi thin ribbons was also investigated. All samples show a shape memory effect immediately after processing without further heat treatment. The melt-spun ribbons were trained under constant strain (bending and tensile deformation) by thermal cycling through the phase transformation temperature range. The addition of copper was effective to narrow the transformation hysteresis. The W addition has improved the TWSME stability of the NiTi alloys and mechanical properties. Results about microstructures, functional and mechanical properties will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.