Abstract

The effects of a 2 T pulsed magnetic field primary annealing process on microstructure evolution and grain boundary characteristics in two-stage cold-rolled silicon steel were examined. Pulsed magnetic annealing increased grain size through the application of relatively smaller intensity of magnetic fields (2 T), compared to steady magnetic annealing. The effect of increasing grain size may be attributed to the magnetic acceleration effect of boundary motion under magnetic pulse conditions. Pulsed magnetic annealing may serve to enhance the relative intensity of the {111} component and decrease the frequency of low-angle misorientations. Repeated magnetostriction induced by pulsed magnetic field applications may accelerate overall dislocation motion. These findings suggest that pulsed magnetic fields require relatively lower intensities than steady magnetic fields to achieve superior results, providing a potentially viable alternative for industrial annealing processes for electrical steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.