Abstract

This paper presents a physics-based analysis to quantitatively describe the effects of grain size, grain boundaries, and crystallographic orientation on the flow stress of the polycrystalline material and thereby on the cutting and thrust forces. The model has been experimentally validated, in terms of the force intensities and sensitivities to microstructure attributes such as the grain size and the misorientation by comparing the forces to measured data in micromachining of polycrystalline silicon carbide (p-SiC). Molecular dynamics (MD) simulations are performed to explore the effects of grain boundaries and misorientation and to validate the modeling analysis in the context of resulting force ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.