Abstract
Hard carbons (HCs) are emerging as promising anodes for potassium-ion batteries (PIBs) due to overwhelming advantages including cost effectiveness and outstanding physicochemical properties. However, the fundamental K+ storage mechanism in HCs and the key structural parameters that determining K+ storage behaviors remain unclear and require further exploration. Herein, HC materials with controllable micro/mesopore structures are first synthesized by template-assisted spray pyrolysis technology. Detailed experimental analyses including in situ Raman and in situ electrochemical impedance spectroscopy analysis reveal two different K+ storage ways in the porous hard carbon (p-HC), e.g., the adsorption mechanism at high potential region and the intercalation mechanism at low potential region. Both are strongly dependent on the evolution of microstructure and significantly affect the electrochemical performance. Specifically, the adequate micropores act as the active sites for efficient K+ storage and ion-buffering reservoir to relieve the volume expansion, ensuring enhanced specific capacity and good structural stability. The abundant mesopores in the porous structure provide conductive pathways for ion diffusion and/or electrolyte infiltration, endowing fast ionic/electronic transport kinetics. All these together contribute to the high energy density of activated carbon//p-HCs potassium ion hybrid capacitors (74.5Whkg-1 , at 184.4Wkg-1 ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.