Abstract
An Mg-3Gd (wt.%) sample with gradient rolling strains (ε = 0–0.55) was prepared using a wedge-shaped plate after one-pass hot rolling, allowing a high-throughput characterization of microstructure and texture over a wide strain range within one hot-rolled plate. The microstructure and texture evolutions were characterized as a function of rolling strain for the as-hot-rolled sample and as a function of annealing temperature for the subsequently annealed samples. The deformed microstructure showed a gradual change with increasing rolling strain, i.e., from a deformation twins-dominant structure in the low strain range of 0–0.20, to a shear bands-dominant structure in the higher strain range of 0.20–0.55. The recrystallization behavior during annealing showed a clear correlation between the recrystallization nucleation site and the deformed microstructure. However, a weak recrystallization texture with non-basal texture components was formed over almost the entire strain range. This work demonstrates a high-throughput experimental strategy using a wedge-shaped sample to investigate the effect of various processing parameters, such as strain and annealing temperature, on the evolution of microstructure, texture, and mechanical properties, which could accelerate the optimization of processing parameters and microstructural design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.