Abstract

Abstract Bones are nanocomposites of protein, mineral and water that form mineralized collagen fibrils arranged in a variety of layered lamellae. Bone material has a long evolutionary record and specific bones attain shapes and microstructures that have well stood the test of time such that they can be considered optimized to match their function. Further, most bones typically contain entombed living cells, osteocytes responsible for adaptation, healing and biochemical signaling. The bones of pike fish (Esox lucius) are different because, as with other advanced teleost species, they evolved to eliminate osteocytes from the microstructure. This suggests that these cells are not needed because these bones are more damage resistant than mammalian bones. Here we explore details of this biologically-grown structure, using a combination of light and X-ray based characterization methods. We report the three-dimensional arrangement and composition of the heavily cyclically-loaded pivot of the cleithrum bone in the pectoral girdle of pike. By combining absorption and phase contrast-enhanced micro-computed tomography, electron microscopy, polarized light microscopy and second harmonic generation multi-photon confocal laser scanning microscopy we reveal the principle layout of the bone of this predator which we determine at the millimeter, micrometer and nanometer lengthscales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.