Abstract
The creep behaviour of an acicular-grained Si 3N 4 in the temperature range of 1260–1400°C under 50–350 MPa tensile stress was investigated. The viscous flow of an amorphous grain boundary phase and uninhibited grain boundary sliding resulted in a fast initial creep regime characterized by a stress exponent = 1.8 and an activation energy = 509 kJ mol −1, which increased to 3.2 and 1054 kJ mol −1, respectively, in the secondary creep regime. Between these two regimes the creep rate dropped rapidly due to grain interlocking and loading of the acicular grains parallel to the tensile axis. An enhanced dislocation activity in the parallel grains and cavitation in the grain pockets were observed, but their roles in the creep deformation appear minor. It is proposed that the mechanism controlling the secondary creep regime is the nucleation and growth of surface steps on the atomically smooth (100) grain boundary plane through the solution/precipitation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.