Abstract

Although different kinds of metal materials have been built in the past years, it is difficult to fabricate the components of copper alloys with high strength and high conductivity due to their high reflectivity and thermal conductivity. In this paper, Cu-Cr alloy with high strength and high conductivity was successfully manufactured by high laser power selective laser melting. The microstructure, mechanical properties and conductivity were studied and compared before and after the heat treatment. The microstructure of the as-built sample was columnar grains with very fine cellular sub-structures and precipitates of Cr and Cr2O3. After heat treatment, the Cr particles precipitated from Cu matrix, resulting in simultaneous increase in strength and conductivity. The ultimate tensile strength of 468 MPa, yield strength of 377.33 MPa, and electrical conductivity of 98.31% IACS were achieved, which is even better than the samples fabricated by rolling with post heat treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.