Abstract

With the increasing demand of today's technology, there is a growing need for high temperature materials with improved fracture toughness. Whisker-reinforced ceramic composites are materials with potentially high fracture toughness. Many whisker-matrix systems are possible, but the choices for toughened composites are limited by such considerations as chemical compatibility and thermal expansion mismatch. In view of the high fracture toughness of tetragonal zirconia polycrystals (TZP) matrix, many investigators have successfully attempted to improve the mechanical properties of yttria stabilized tetragonal zirconia polycrystals (Y-TZP) with the addition of strong, single crystal SiC whiskers. The primary objective of this work was to place Al{sub 2}O{sub 3} whiskers into an Y-TZP matrix and study the toughening effects on the new composite. This particular system was chosen because of the high strength and reasonably high toughness inherent within Y-TZP and potentially high strength obtainable within a single crystal alumina. This, combined with an agreeable thermal expansion mismatch, could theoretically produce a composite of exceptionally high toughness. 14 refs., 7 figs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.